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ABSTRACT
Applications of quantitative genetics and conservation genetics often require measures of pairwise

relationships between individuals, which, in the absence of known pedigree structure, can be estimated
only by use of molecular markers. Here we introduce methods for the joint estimation of the two-gene
and four-gene coefficients of relationship from data on codominant molecular markers in randomly
mating populations. In a comparison with other published estimators of pairwise relatedness, we find
these new “regression” estimators to be computationally simpler and to yield similar or lower sampling
variances, particularly when many loci are used or when loci are hypervariable. Two examples are given
in which the new estimators are applied to natural populations, one that reveals isolation-by-distance in
an annual plant and the other that suggests a genetic basis for a coat color polymorphism in bears.

COEFFICIENTS of relationship between pairs of of relatedness can only be achieved through inferences
with molecular markers (Avise 1995).individuals play a central role in many areas of

genetics and behavioral ecology. For example, in quanti- A third field of inquiry within which pairwise relat-
edness plays a significant role is the evolution of socialtative genetics, the phenotypic resemblance of relatives,

which forms the basis for the empirical estimation of behavior. Studies in this area are largely focused around
Hamilton’s (1964) theory of kin selection, which statescomponents of genetic variance, is a direct function of

the probability that individuals have one or two genes that the evolutionary advantage of an altruistic act de-
pends on whether the cost to the donor exceeds theidentical by descent at a locus. Given such probabilities,

causal components of variance (such as the additive and benefit to the recipient multiplied by the relatedness
between the two individuals. Because most such studiesdominance genetic variance) can be estimated from the

phenotypic covariance (Falconer and Mackay 1996; involve field populations where parentage is not directly
observed, indirect inferences about relatedness mustLynch and Walsh 1998). In studies of laboratory or

domesticated populations, where investigators can be again be made with molecular markers.
In all of the above-mentioned applications of molecu-certain of the degrees of relationship among observed

individuals, the application of conventional quantita- lar markers, it is an implicit assumption that such mark-
ers provide reasonable, if not excellent, estimates oftive-genetic methodology is straightforward. Major un-
relatedness coefficients. Yet, there are few existing meth-certainties about the relationships among individuals
ods for the estimation of pairwise relatedness for whichfrom natural populations are the primary impediment
the statistical properties are well understood or wellto extending quantitative-genetic analysis to field stud-
behaved. Several estimators have been developed fories, but Ritland (1989, 1996a) has suggested how this
pairwise relatedness using the rather specialized dataproblem might be overcome by regressing pairwise mea-
provided by DNA-fingerprint profiles (Lynch 1988; Lisures of phenotypic similarity on pairwise estimates of
et al. 1993; Geyer and Thompson 1995). Followingrelatedness obtained with molecular markers.
up on earlier work of Pamilo and Crozier (1982),Pairwise measures of relatedness also play a role in the
Queller and Goodnight (1989) developed marker-field of conservation genetics. For example, in captive
based estimators for within-group relatedness, but thesebreeding programs, substantial effort is being made to
are of somewhat limited applicability in the estimationensure that matings are minimized between close rela-
of pairwise relationship because of their poor behaviortives to reduce the loss of genetic variation by random
with diallelic loci. An efficient method-of-moments esti-genetic drift. If the potential parents are derived directly
mator, recently developed by Ritland (1996b), pro-from wild-caught stock or are descendants of individuals
vides a basis for the joint estimation of identity-by-of unknown relationship, a relative ranking of degrees
descent at both the genic and genotypic levels. Ritland’s
approach, which is based on a model involving joint
probabilities of the two genotypes of a pair, can be quite
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been developed by Thompson (1975, 1976, 1986) to edness and genetic components of variance (Cocker-
ham 1971; Jacquard 1974). Higher-order terms musttest for specific types of relationship.

In this article, we introduce a simple method for ob- also be added to the previous expression when epistatic
sources of genetic variance are present, but providedtaining unbiased estimates of pairwise relationship coef-

ficients. Its simplicity arises from the use of a regression the population is randomly mating, no relationship co-
efficients are required beyond rxy and Dxy (Kempthorneapproach for inferring relationship—one individual of

a pair serves as a “reference,” and the probabilities of 1954; Lynch and Walsh 1998).
In the following analyses, we focus on the estimationthe locus-specific genotypes in the other “proband” indi-

vidual are conditioned on those of the reference. Aside of rxy and Dxy, as these are the relationship coefficients
that are of primary practical utility. Our computer simu-from its ease of application and unbiased nature, this

method has two very useful features—it generates joint lations showed that estimates of φxy have much higher
sampling variance than those of rxy and Dxy, enough soestimates of both the two- and four-gene coefficients

of relatedness, and it yields simple expressions for the that the accurate measurement of φxy is beyond reach
unless very large numbers of informative loci can besampling variance of these coefficients. This latter fea-

ture provides a convenient means for optimizing the assayed. This large sampling variance does not carry
over greatly to estimates of the composite measure rxy,use of information derived from different loci. Follow-

ing our derivation of the regression method, we com- because there is also a very large negative sampling
covariance between the two component coefficients, φxypare its performance against that of other methods and

then provide two examples of its application to studies and Dxy.
Genotypic probabilities: There are two fundamentalof natural populations.

ways to set up a model for the genotypic probabilities
in a pair of individuals. The first approach, adopted by

JOINT ESTIMATION OF TWO-GENE AND Ritland (1996b), specifies the joint probability of both
FOUR-GENE COEFFICIENTS genotypes. The second approach, adopted here, speci-

fies the conditional genotypic probability of a probandThroughout, we focus on the traditional definition
individual y, given the genotype of the reference indi-of relatedness for individual pairs of diploid individuals,
vidual x. We refer to these two approaches as “correla-rxy 5 2Qxy, where the coefficient of coancestry, Qxy, is the
tion” and “regression” methods in the sense that theyprobability that, for any autosomal locus, a random gene
are symmetrical vs. asymmetrical measures. Both ap-taken from individual x is identical by descent with a
proaches allow the joint estimation of rxy, φxy, and Dxy,random gene taken from individual y. For monozygotic
but as we will see, correlation and regression estimatorstwins (and clonemates), rxy 5 1; for parent-offspring and
differ substantially in terms of complexity and statisti-full-sib relationships, rxy 5 0.5; and for second- and third-
cal properties. It is important to note that our use oforder relationships, rxy is equal, respectively, to 0.25 and
the terms correlation and regression refers to the un-0.125.
derlying statistical model and not to the estimatorsThe relatedness coefficient for two individuals (x and
themselves. The estimators developed here and in Rit-y) is a linear function of two “higher-order” coefficients,
land (1996b) are more properly termed “method-of-
moments” estimators.rxy 5

φxy

2
1 Dxy . (1)

Consider a single locus with n alleles, and let x be the
If we consider all four genes possessed by two individuals reference individual (with alleles a and b) and y be the
at a locus, φxy is the probability that a single gene in x proband individual (with alleles c and d). The condi-
is identical by descent with one in y, and Dxy is the tional probabilities for the n(n 1 1)/2 possible geno-
probability that each of the two genes in x is identical types in y can be expressed as a function of φxy, Dxy, and
by descent with one in y. For parents and offspring, the known allele frequencies,
φxy 5 1 and Dxy 5 0; for full sibs, φxy 5 0.5 and Dxy 5

P(y 5 cd|x 5 ab) 5 P0(cd) · (1 2 φxy 2 Dxy)0.25; and for half sibs, φxy 5 0.25 and Dxy 5 0. For many
applications, such a subdivision of rxy is unnecessary, 1 P1(cd|ab) · φxy 1 P2(cd|ab) · Dxy ,
but in quantitative genetics, a knowledge of the higher-

(2)order coefficient Dxy is desirable because the expected
genetic covariance between individuals is defined to be where P0(cd) is the Hardy-Weinberg probability of geno-

type cd, and P1(cd|ab) and P2(cd|ab) denote the probabili-
sxy 5 rxys

2
A 1 Dxys

2
D ,

ties of genotype cd in y given genotype ab in x, the first
being conditional on the two individuals having onewhere s2

A and s2
D are the additive and dominance compo-

nents of genetic variance for a quantitative trait. This gene identical by descent and the second being condi-
tional on two genes being identical by descent.expression assumes a random-mating population, which

we also assume throughout. Inbreeding introduces the Regression estimators: Equation 2 provides the foun-
dation for the regression-based estimators that we nowneed for additional higher-order coefficients of relat-
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explore. To illustrate the general approach, we first proband individual alleles c and d. If the reference indi-
vidual is homozygous, Sab 5 1, while if it is heterozygous,derive estimators conditioned on the observation of a

homozygote reference genotype. In this straightforward Sab 5 0. Likewise, if allele a from the reference individual
is the same as allele c from the proband, Sac 5 1, whilecase, two probabilities are informative about x’s relation-

ship with individual y: P(ii|ii) and P(i·|ii), the condi- Sac 5 0 if it is different. In total, there are six S ’s corre-
sponding to the six ways of choosing two objects withouttional probabilities that the two individuals have two vs.

one pair of genes identical in state at the locus, with a replacement from a pool of four objects. Letting pa and
pb be the frequencies of alleles a and b in the population,dot denoting any allele other than i. The probability of

no genes identical in state, P(··|ii), provides no addi- the fully general expressions for the two coefficients of
primary interest aretional information, as it simply equals [1 2 P(ii|ii) 2

P(i·|ii)]. Letting pi be the frequency of the ith allele,
r̂xy 5

pa(Sbc 1 Sbd) 1 pb(Sac 1 Sad) 2 4papb

(1 1 Sab)(pa 1 pb) 2 4papb

(5a)from Equation 2,

P(ii|ii) 5 p2
i 1 pi(1 2 pi)φxy 1 (1 2 p2

i )Dxy (3a)
D̂xy 5

2papb 2 pa(Sbc 1 Sbd) 2 pb(Sac 1 Sad) 1 (SacSbd) 1 (SadSbc)
(1 1 Sab)(1 2 pa 2 pb) 1 2papb

.
P(i·|ii) 5 2pi(1 2 pi) 1 (1 2 pi)(1 2 2pi)φxy (5b)

2 2pi(1 2 pi)Dxy . (3b)
In actual practice, there is no particular reason to use

one member of a pair of individuals as the referenceAssuming that we know the allele frequency pi in ad-
vance, these two equations can be rearranged to yield as opposed to the other member. Thus, the reciprocal

estimates r̂xy and r̂yx , etc., can be arithmetically averagedestimators for the two unknown relationship coeffi-
cients, to further refine the pairwise relationship estimates for

the pair of individuals x and y. In all of the following
analyses, we rely on such reciprocal estimates, as theφ̂xy 5

(1 1 pi)P̂(i·|ii) 1 2piP̂(ii |ii) 2 2pi

(1 2 pi)2
(4a)

arithmetic average of the two reciprocal estimates gener-
ally has a lower statistical variance than a single estimate.

D̂xy 5
p2

i 2 piP̂(i·|ii) 1 (1 2 2pi)P̂(ii |ii)
(1 2 pi)2

, (4b) In principle, the root of the product of the two recipro-
cal estimates could be used, but this leads to undefined

and from Equation 1, estimates in the event that one is negative.
Multilocus estimates: Estimates of relatedness are usu-

r̂xy 5
P̂(i·|ii) 1 2P̂(ii |ii) 2 2pi

2(1 2 pi)
. (4c) ally based on data from multiple loci. Under the assump-

tion that the marker loci are unlinked, the locus-specific
estimates are independent. However, any averaging of

Throughout, we use a ∧ to distinguish an estimator the locus-specific estimates to obtain overall estimates
from its parametric value. For any pair of observed indi- of rxy and Dxy should account for the dramatic among-
viduals, the two probabilities necessary for the solution locus differences of sampling variance that can arise
of these equations, P̂(i·|ii) and P̂(ii|ii), are estimated from both differences in reference genotypes (e.g., com-
as 0/1 variables, with 1’s being given to observed two- mon homozygote vs. rare heterozygote) and in levels
genotype combinations and 0’s being given to unob- of variation (loci with more alleles being more informa-
served combinations. (Both probabilities are 0 if the tive).
proband has no alleles in common with the reference.) Let wr,x(,) and wD,x(,) denote the weights to be used
Thus, for example, when individual y contains 2, 1, and for the ,th locus in the overall estimates of rxy and Dxy,
0 i alleles, the estimate r̂xy is 1, (1 2 2pi)/[2(1 2 pi)], and let Wr,x and WD,x be the sums of the weights over
and 2pi/(1 2 pi), respectively. all L loci. The composite estimates of the relationship

The appendix provides a parallel set of results for coefficients for x and y are then
heterozygotes at diallelic and multiallelic loci. Diallelic
heterozygous reference individuals introduce no new r̂xy 5

1
Wr,x

o
L

,51

wr,x(,)r̂xy(,) (6a)
problems, but with multiallelic loci, there are six classes
of conditional probabilities for heterozygous reference

D̂xy 5
1

WD,x
o
L

,51

wD,x(,)D̂xy(,) . (6b)individuals. In the latter case then, the number of ob-
served 0/1 variables exceeds the number of unknowns
(φ and D). To deal with this situation, we provide a With statistically independent marker loci, the locus-

specific weights that minimize the sampling variance ofweighted least-squares approximation.
A general estimator, which covers all three cases, is the overall estimates φ̂xy and D̂xy are simply the inverses

of the sampling variances of the locus-specific estimates.best described by introducing “indicator variables” for
the sharing of pairs of alleles (as opposed to more com- As noted in the appendix, we cannot be very certain of

the numerical values of the weights because they areplex patterns of sharing as used earlier). As before, let
the reference individual have alleles a and b and the functions of the parameters that we are trying to esti-
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mate, but approximations can be obtained by simply in which 10 informative loci have been sampled. At that
assuming that x and y are unrelated. The locus-specific point, the lower asymptotic value of the single-locus
weights are then given by the inverses of the sampling sampling variance is closely approximated in most situa-
variances of estimates of the relatedness coefficients for tions, and 10 loci is a good approximation of the sam-
nonrelatives conditional on the genotype in x. General pling scheme employed in many empirical studies, with
expressions for the weights are given by diallelic loci corresponding to isozymes and multiallelic

loci corresponding to microsatellites.
wr,x(,) 5

1
Var[r̂xy(,)]

5
(1 1 Sab)(pa 1 pb) 2 4papb

2papb

(7a) For diallelic loci, the asymptotic sampling variance
per locus for r̂ is equal to 1 in the case of nonrelatives
and somewhat lower for related individuals (even

wD,x(,) 5
1

Var[D̂xy(,)]
5

(1 1 Sab)(1 2 pa 2 pb) 1 2papb

2papb

,
though nonoptimal weights are employed with relatives;(7b)
Figure 1). With allele frequencies approaching 0.5, the

with Sab equal to 1 when x is homozygous and equal to optimal weights of all reference genotypes approach
0 when x is heterozygous. equality regardless of the degree of relationship, be-

Properties of the regression estimators: Extensive cause all alleles are then equally informative. Thus, the
computer simulations demonstrated that the regression asymptotic sampling variances near allele frequencies
estimators given above are essentially unbiased, regard- of 0.5 are the best that one could expect to achieve
less of the numbers of loci or the values of φ and D. even if the correct weights were used. Because even with
Thus, the primary issues of interest are the magnitudes close relatives, the sampling variance is never less than
of the sampling variances of the estimators and their about 0.4 per locus, these results imply that with a large
sensitivity to the degree of actual relationship and to number of loci, the expected standard error of r̂ is
the allele-frequency distribution.

generally on the order 1/√L when diallelic loci are as-We obtained estimates of the sampling variances of
sayed, somewhat greater if loci with extreme allele fre-the regression estimators by Monte Carlo simulation,
quencies are included, and slightly less with close rela-assuming gene frequencies were known without error
tives.and assuming a random mating population with un-

As in the case of r̂, the single-locus sampling variancelinked marker loci. Reference genotypes were drawn
of D̂ depends on the number of loci sampled, but therandomly according to their Hardy-Weinberg frequen-
sensitivity to this is reduced at moderate allele frequen-cies, and the genotypes of the paired individuals were
cies (Figure 1). For all degrees of relationship, the as-then obtained from the conditional genotype distribu-
ymptotic single-locus sampling variance for D̂ declinestions given the reference genotype and the particular
as allele frequencies become more equitable (Figurerelationship. For multiallelic loci, two types of allele-
1). It can exceed 10 when allele frequencies are extremefrequency distributions were considered: uniform distri-
and is never much ,1 with any type of relationship.butions, in which the frequencies of each of the n alleles
Thus, as in the case of r̂, with diallelic loci, the bestper locus were equal to 1/n, and “triangular” distribu-
that one can ever expect to achieve with the regressiontions, in which the frequencies of alleles followed the
estimator is a multilocus standard error of D̂ equal toproportions 1, 2, . . . , n. In all of the following figures,
1/√L.we report the single-locus sampling variances of the

In principle, an increase in the number of alleles perrelationship coefficients. For analyses involving multiple
locus should reduce the sampling variance of related-loci with identical allele frequencies, the sampling vari-
ness estimates, because alleles that are identical in stateance of multilocus estimates can be obtained by dividing
will be more reliable as indicators of identity by descent.the plotted values by the number of loci (L).
For nonrelated individuals, the asymptotic single-locusA special property of the regression estimator is that
sampling variance of r̂ is very close to 1/(n 2 1), regard-the expected single-locus sampling variance declines
less of the form of the allele-frequency distribution (Fig-with increasing numbers of unlinked loci, down to an
ure 2). With parents and offspring, the sampling vari-asymptotic value (Figure 1). This dependence on num-
ance is up to 50% less than this, while with other typesber of loci arises with the regression estimator because
of relatives it is somewhat higher when alleles with lowthe estimation variances (the weights) differ among al-
frequency are common. Again, with an even allele-fre-ternative reference genotypes at the same locus (for
quency distribution, all reference genotypes are equallyexample, a reference genotype having rarer alleles gives
informative regardless of the degree of relationship, soestimates with lower variance). By contrast, the correla-
the results for this case can be viewed as the minimumtion estimator of Ritland (1996b) is not conditioned
sampling variance that one can expect to achieve withupon observed genotype, and its variance only depends
the regression estimator—except in the case of parentson the distribution of gene frequencies in the popula-
and offspring, a standard error of r̂ less than abouttion. Although Figure 1 details the influence of the
1/√L(n 2 1) is not achievable. Relative to the situationnumber of loci on the variance of the regression estima-

tor, for the remaining analyses we focus on the situation with r̂, the rate of reduction in the asymptotic sampling
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Figure 1.—Single-locus sam-
pling variances for estimates of
pairwise r and D for the range
of possible gene frequencies at
diallelic loci. For each gene fre-
quency (in increments of 0.01)
and degree of relationship,
random pairs of multilocus ge-
notypes were obtained by
Monte Carlo simulation for
32,000 individuals. For each
pair of individuals, the two re-
ciprocal weighted estimates
were obtained and then aver-
aged to obtain the pairwise esti-
mates. Solid lines, large dashes,
medium dashes, and short
dashes denote estimates based
on 1, 5, 10, and 25 loci, respec-
tively.

variance of D̂ with increasing n is more rapid (Figure of Dxy. However, for situations in which one can be
2). For nonrelatives, the asymptotic single-locus variance reasonably certain that the dominance genetic variance
closely approximates 2/[n(n 2 1)] regardless of the for a trait is negligible, or when one can be certain that
form of the allele-frequency distribution. collateral relatives (e.g., pairs of individuals, such as full

sibs and double first cousins, that share paternal and
maternal genes) are absent, Dxy can be ignored. In addi-

COMPARISON WITH OTHER ESTIMATORS tion, in many applications in conservation genetics and
behavioral ecology, the composite estimate rxy may pro-As noted above, for applications in quantitative genet-
vide all the information that is needed. Four additionalics, there is a need for separate estimates of rxy and Dxy

estimators of rxy, all of which are unbiased, have beenbecause the additive genetic covariance between indi-
previously described.viduals is a function of the composite measure rxy,

whereas the dominance genetic covariance is a function A simple estimator based on the sharing of alleles,
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Figure 2.—Single-locus sam-
pling variances for r and D as
a function of number of alleles
at loci with uniform and trian-
gular allele-frequency distribu-
tions. Results are given for non-
relatives (NR), half sibs (HS),
full sibs (FS), and parents and
offspring (PO). The plotted
values were obtained from
Monte Carlo simulations of 10
loci (all with the same allele-
frequency profile) for 32,000
pairs of individuals. Sampling
variances of multilocus esti-
mates of r and D are obtained
by dividing the plotted values
by the number of loci, keeping
in mind that somewhat higher
values are expected if ,10 loci
are observed.

proposed by Lynch (1988) for analyses employing DNA above, Equation 8 does not return estimates of rxy .1.
fingerprint profiles, can be generalized to any set of However, like the weighted regression estimator, Equa-
codominant markers. The following expression in- tion 8 does generate negative estimates whenever the
cludes the slight modification suggested by Li et al. observed Sxy is ,S0 because of sampling error. In the
(1993). Define the similarity index, Sxy, to be the average following, Equation 8 is referred to as the similarity-
fraction of genes at a locus in a reference individual index estimator.
(here either x or y) for which there is another gene in Like Equation 8, Ritland’s (1996b) method-of-
the proband that is identical in state. Thus, Sxy 5 1 when moments estimator for rxy considers the joint distri-
(x 5 ii, y 5 ii) or (x 5 ij, y 5 ij), Sxy 5 0.75 when (x 5 bution of both genotypes in a symmetrical way. The
ii, y 5 ij) or vice versa, Sxy 5 0.5 when (x 5 ij, y 5 ik), differing information provided by alternative alleles is
and Sxy 5 0 when (x 5 ij, y 5 kl). A single-locus estimator incorporated by considering the incidence of each of
for rxy is then the n possible alleles at the locus. The observed data are

summarized as an array of n similarities, where the ith
r̂xy 5

Sxy 2 S0

1 2 S0

, (8) element (Si) is equal to 0.0 (at most, one of the individu-
als contains allele i), 0.25 (both individuals contain a

where S0 5 on
i51p2

i (2 2 pi) is the expected value of S at single i allele), 0.5 (one individual contains two and the
the locus for unrelated individuals in a random-mating other individual one i alleles), or 1.0 (both individuals
population. This simple estimator derives from the prin- are ii homozygotes). Estimates of rxy derived for each
ciple that if two individuals are related to degree rxy, the allele are combined into a single estimate for the locus
expected fraction of genes that they have identical in by using weights that assume zero relationship (as with
state is the sum of the fractions shared because of iden- the weighted regression estimators derived above),
tity-by-descent and because of identity-in-state (but not
identity-by-descent), E(Sxy) 5 rxy 1 (1 2 rxy)S0. Note that r̂xy 5

2
n 2 1 31o

n

i51

Si

pi
2 2 14. (9)

unlike the weighted regression estimator described
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[Note that the rxy in this article is twice that defined in
the Ritland (1996b) article.]

A simpler estimator, also based upon the joint distri-
bution of genotypes, was described by Ritland (1996b)
and earlier workers (Li and Horvitz 1953; Weir 1996,
Equation 2.28), primarily in relation to estimating in-
breeding coefficients. Defining an alternative similarity
index such that S9xy 5 1 when (x 5 ii, y 5 ii), S9xy 5 0.5
when (x 5 ij, y 5 ij) or (x 5 ii, y 5 ij), S9xy 5 0.25 when
(x 5 ij, y 5 ik), and S9xy 5 0 when (x 5 ij, y 5 kl), then

r̂xy 5
2(S9xy 2 J0)

1 2 J0

, (10)

where J0 5 on
i51p2

i is the expected homozygosity at the
locus. Equation 10 is equivalent to an unweighted corre-
lation estimator. Because our analyses showed it to be
uniformly worse in terms of sampling variance than all
of the estimators presented here, we do not consider it
any further.

Finally, we note Queller and Goodnight’s (1989)
estimator of rxy. Although their index is primarily de-
signed for estimating the average degree of relatedness
within groups of individuals, it can be expressed in terms
of the same parameters that we employ with our Equa-
tions 5a and 5b to obtain a pairwise estimator for individ-
uals x and y,

r̂xy 5
0.5(Sac 1 Sad 1 Sbc 1 Sbd) 2 pa 2 pb

1 1 Sab 2 pa 2 pb

. (11)

This equation has limited utility with diallelic loci—if
individual x is a heterozygote, then Sab 5 0 and Equation
11 is undefined because pa 1 pb 5 1. Therefore, in the
following analyses, we consider Equation 11 only in the
context of multiallelic loci.

In comparing the performance of these alternative
methods for estimating rxy to that of the regression esti-
mator, we evaluated their single-locus sampling vari-
ances analytically by considering the joint probabilities
of all genotypes of pairs of individuals, conditional on
the degree of relationship and the allele-frequency dis-
tribution. With these alternative methods, the weights
depend only on the allele-frequency distribution in the
population, not on the genotypes of the reference and
proband individuals. Thus, with multiple marker loci
all with the same allele frequencies, the multilocus sam- Figure 3.—Single-locus sampling variances for estimates of
pling variances are simply the single-locus values divided r derived with the regression method (R), the correlation
by the number of loci. When loci have different allele- method (C), and the similarity-index method (S) for diallelic

loci. The results for the regression method apply to analysesfrequency distributions, as is usually the case in practice,
based on 10 loci and were obtained by Monte Carlo simula-weighted multilocus estimates can be obtained by
tions; additional loci yield slightly lower values. The resultsweighting the locus-specific estimates by the inverses of for the correlation and similarity-index methods are exact

their sampling variance. solutions based on expected genotype combinations.
For diallelic loci, the correlation estimator yields a

sampling variance per locus equal to one in the case of
nonrelatives regardless of the allele frequency (Figure pling variance. On the other hand, for close relatives,
3). As noted above, the regression estimator asymptoti- compared to the correlation estimator, the regression
cally approaches this same level of efficiency for nonrela- and similarity-index methods yield more accurate esti-

mates of r over the full range of allele frequencies attives, but the similarity-index method has higher sam-
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Figure 4.—Single-locus sam-
pling variances for estimates of r
for multiallelic loci, derived with
the regression method (R), the
correlation method (C), the simi-
larity-index method (S), and the
Queller-Goodnight method (Q)
for uniform and triangular allele-
frequency distrubutions. The re-
sults for the regression method
apply to analyses based on 10 loci
and were obtained by Monte Carlo
simulations; additional loci yield
slightly lower values. The results
for the correlation and the similar-
ity-index methods are exact solu-
tions based on expected genotype
combinations.

diallelic loci, with the latter actually outperforming the with any estimator of distant relationships. For related
individuals, the regression and similarity-index methodsformer in the case of parent-offspring pairs.

A multiallelic perspective yields further insight into yield very similar sampling variances of r provided there
are at least three alleles per locus, while the correlationthe relative efficiencies of the four techniques. With a

uniform distribution of three or more alleles per locus, and Queller-Goodnight estimators are again less effi-
cient. For the two superior methods, the single-locusthe single-locus sampling variance for r̂ is essentially 1/

(n 2 1) with nonrelatives regardless of the method sampling variance of estimates of r̂ asymptotically ap-
proaches 0.14 with increasing allele number with full(Figure 4). Thus, because an even allele-frequency dis-

tribution provides the greatest power of inference, this sibs, and very slowly approaches 0 with parents and
offspring.seems to be the best that one can expect to achieve
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TABLE 1

Sampling variance properties of D̂

Number of alleles

Relationship Method 2 4 6 12

Uniform frequencies
Nonrelatives R 0.999 0.168 0.067 0.015

C 1.000 0.166 0.067 0.017
Half sibs R 1.011 0.269 0.142 0.056

C 1.004 0.272 0.144 0.056
Full sibs R 0.949 0.423 0.324 0.248

C 0.948 0.440 0.336 0.256
Parent-offspring R 0.989 0.368 0.219 0.096

C 1.008 0.376 0.220 0.096

Triangular frequencies
Nonrelatives R 1.070 0.182 0.074 0.016

C 1.000 0.166 0.067 0.017
Half sibs R 1.276 0.329 0.179 0.074

C 1.240 0.360 0.240 0.080
Full sibs R 1.362 0.605 0.486 0.396

C 1.480 1.000 0.960 0.880
Parent-offspring R 1.471 0.479 0.294 0.136

C 1.520 0.640 0.640 0.280

Values are given for the single-locus sampling variances. R and C denote the regression and correlation
estimators, respectively. The regression estimates are based on Monte Carlo simulations of 10 loci per pair of
individuals.

With a triangular allele-frequency distribution, the ships, defined as family (parent-offspring, full sibs),
regression and correlation methods again yield essen- close (half sibs, uncle, etc.), remote (cousin, etc.), and
tially identical results with nonrelatives, while the simi- unrelated. This approach to inferring genealogical “re-
larity-index and Queller-Goodnight methods have lationship” is fundamentally different from our ap-
somewhat higher sampling variances. However, with re- proach to estimating “relatedness,” which is a nondis-
lated individuals, the similarity-index method is again crete numerical parameter defined in terms of
the superior of the four methods, and the correlation probabilities of identity-by-descent. Nevertheless, we
and Queller-Goodnight estimators generally yield the have considered the possibility of using likelihood meth-
highest sampling variance. By use of either the regres- ods to estimate “relatedness” under our regression
sion or similarity-index methods, up to a 50% reduction framework. Using notation developed earlier, the likeli-
in the standard error of r̂ an be achieved. hood of data from one locus is the probability

The only other marker-based method for the estima-
P(y 5 cd|x 5 ab) 5 papb(2 2 Sab)(2 2 Scd)tion of D is the correlation-based estimator of Ritland

(1996b), which is quite complex algebraically. Results in · [(1 2 2φxy 1 Dxy)pcpd 1 2(φxy 2 Dxy)
Table 1 show that the much simpler regression estimator

· ((Sac 1 Sbc)pd 1 (Sad 1 Sbd)pc)/4presented above yields essentially the same asymptotic
sampling variances as the correlation method when the 1 Dxy(SacSbd 1 SadSbc)/2] (12)
allele-frequency distribution is uniform. With triangular
allele-frequency distributions, the results are also very and the multilocus likelihood is the product of Equation

12 over loci. This expression can be used for estimatingsimilar for nonrelatives, but with related individuals, the
regression estimator yields more precise estimates, with relatedness by solving for the values of rxy and Dxy that

maximize Equation 12, given the data.the reduction in sampling variance approaching 50%
with close relatives. Using computer simulations, we examined the behav-

ior of such maximum-likelihood estimation of related-Thompson (1975, 1986) has extensively investigated
the use of maximum likelihood for inferring pairwise ness by a standard numerical method (Newton-Raphson

iteration). Convergence to a maximum was confirmedrelationship. The likelihood method allows one to take
an entirely different approach for genealogical infer- both by noting that the likelihood increased over itera-

tions and converged and by comparing the iterativeence. For example, Thompson discusses the power of
likelihood to distinguish among major types of relation- solutions to likelihood functions of the same data mapped
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by brute force. The results, and those discussed by Rit-
land (1996b), suggest that the potential for using maxi-
mum likelihood for estimating relatedness is limited.
The problem is fundamentally due to the fact that the
ideal properties of likelihood are asymptotic or apply
to “large” sample sizes. The number of loci usually avail-
able for pairwise estimation is inherently small—too
small for likelihood to avoid substantial problems with
bias (usually negative) and extremely large sampling
variance. For example, for the case of zero true relat-
edness, the average estimate of rxy is on the order of
21.0 or less when 40 or fewer loci are sampled, and the
sampling variance is two to three orders of magnitude
beyond that shown for the alternative estimators in Fig-

Figure 5.—Estimates of pairwise relatedness in the com-ures 3 and 4. Interestingly, we found that there is an mon monkeyflower plotted as a function of distance. The
approximate sample size (number of loci) above which estimated slope of the linear regression is 20.037/m (0.005)
the maximum-likelihood estimators become “stable” or and the estimated intercept is 0.21 (0.01). The standard errors

(in parentheses) were obtained by bootstrapping over individ-show approximately the predicted asymptotic variance.
uals, with comparisons between identical individuals beingHowever, this sample size is large. For the maximum-
excluded.likelihood estimator of rxy, at low true relatedness, stabil-

ity occurs at z70 diallelic loci (p 5 0.5). The maximum-
likelihood estimator of Dxy exhibits similar behavior,

tion, there is a negative regression of relatedness onalthough it begins to stabilize when z30 loci have been
distance (Figure 5) as expected under isolation-by-dis-sampled. Thus, while the maximum-likelihood ap-
tance. Relatedness decreased z50% over the span fromproach may provide a useful means for comparing alter-
0 to 4 m, with the average value for adjacent plantsnative degrees of relationship by likelihood-ratio tests,
being 0.21, nearly the level of relatedness expected be-its applicability for estimating pairwise relatedness coef-
tween half sibs (0.25).ficients appears to be limited unless one has the luxury

A second application of relatedness estimates derivesof a very large number of polymorphic markers.
from work (D. Marshall and K. Ritland, unpublished
results) with a white-phase (termed Kermodism) of the

EXAMPLE APPLICATIONS black bear, which is found in low to moderate (10%)
frequency along the north coast of British ColumbiaAs examples of how estimators of pairwise relatedness
and adjacent islands. The genetic basis of the coat colorcan be used in population studies and how they behave
polymorphism is unknown. During late summer 1997,with actual data, we consider two applications. First, as
nearly 900 bear hair samples were collected from fivepart of a study of isolation-by-distance and field heritabil-
islands and the adjacent mainland of northern coastalities in the common monkeyflower (Mimulus guttatus),
Bristish Columbia. DNA was extracted from hairs with300 plants were randomly selected along an 84-m tran-
roots and assayed for 8 highly polymorphic microsatel-sect through a meadow adjacent to Indian Valley Reser-
lite loci using the primers developed by Paetkau et al.voir in Clear Lake County, California (this was the
(1995). The number of alleles per locus ranged from“meadow” transect of Ritland and Ritland 1996). Ex-
7 to 17, with a mean of 10.4, and locus-specific heterozy-tracts were obtained from corollas and assayed for 10
gosities ranged from 0.72 to 0.85, with a mean of 0.79.polymorphic isozyme loci. Eight loci were diallelic, 1
After factoring out the multiple samples for individualwas triallelic, and the other had four alleles. Using the
bears, a total of 89 distinct genotypes were found in theregression estimator, relatedness was estimated for pairs
regions where Kermodism was of significant frequencyof plants separated by up to 4 m (with gene frequencies
(17 on Gribbel Island, 13 on Hawksbury Island, 38 onestimated from the entire sample). The estimates of
Princess Royal Island, and 21 at Terrace [mainlandpairwise relatedness from this dataset show considerable
BC]). Bear hair color was also recorded in these sam-scatter, with some being .11 and many ,0 (Figure 5).
ples. Estimates of pairwise relatedness were found withinSuch behavior is in accordance with the results pre-
each of these four regions, using the pooled samplessented above, which highlight the large sampling vari-
to estimate gene frequencies. All pairs of individualsance expected for estimates based upon relatively few
were then classified into two groups: pairs sharing coatmarker loci. Because of this large variance, significant
color (both white or both black, of which there wereinferences can be made only from groups of pairwise
614 pairings) and pairs not sharing coat colors (onerelatedness estimates or from correlations of these esti-
black, one white, involving 156 pairings). A comparisonmates with other quantities such as similarity for a quan-

titative trait (Ritland 1996a). In this particular applica- of the frequency distribution of r̂ for these two groups
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The high sampling variance of estimates of relat-
edness arises in part because of variance in identity-by-
descent among loci and in part because of variance
in identity-in-state for alleles that are not identical by
descent. These sources of sampling error are fundamen-
tal consequences of Mendelian segregation, and no
amount of statistical finesse can eliminate them. In the
actual estimation of relatedness, however, further sam-
pling error is introduced by error in inference. With
the regression and correlation estimators, for example,
large standard errors result because the estimates of
relationship coefficients derived from single loci com-
monly fall outside of the true domain of (0, 1). Although
estimators can be designed to ensure that all estimates
lie in the range of true possibilities (e.g., Thompson
1976), all such estimators necessarily return biased esti-Figure 6.—Distributions of estimates of pairwise relat-

edness among bears not sharing the same coat color and mates, and the magnitude of the bias depends on the
among bears sharing the same coat color. actual degree of relationship. Thus, while negative sin-

gle-locus estimates of relationship coefficients may seem
to be an undesirable feature, it is precisely this feature

(Figure 6) shows an excess of relatedness among bears that ensures that the estimators proposed above will be
sharing coat colors (r̄ 5 0.057 compared to 0.039 for unbiased.
unlike colors), suggesting a genetic basis for the varia-

Our results suggest that the relative advantages of the
tion in this character. However, bootstrap resampling

alternative estimators of relatedness depend on several
indicated that this difference of means is not significant

factors. These include the number of loci, the allele-(the excess being present in only 88 highly variable
frequency distribution, the degree of actual relation-microsatellite loci, the statistical error of relatedness is
ship, and the coefficient estimated (r vs. D). In general,considerably less than that experienced with isozyme
molecular-marker approaches that yield many allelesmarkers in the previous study). Further inferences
and loci tend to favor use of the regression estimatorsabout the mode of inheritance of Kermodism are given
proposed in this article over the correlation estimatorsin Ritland (1999).
presented by Ritland (1996b). With small numbers of
diallelic loci with extreme allele frequencies, the corre-
lation method is more efficient than the regressionDISCUSSION
method, but the regression estimators are more efficient

Estimation of relatedness with molecular markers is in almost all other cases. In addition, the simplicity of
a statistically demanding enterprise. On the positive

the regression estimators lends to easier programming
side, all of the estimators described above (except maxi-

and more stability of estimates under uneven allele fre-mum-likelihood) are essentially unbiased in the sense
quency distributions. The simplicity of the regression-that they return estimates that are on average identical
based approach is underscored by our ability to obtainto their expected values. Errors in estimates of popula-
an analytical solution for D̂ with this method. By con-tion allele frequencies, which were not incorporated
trast, the correlation approach of Ritland (1996b) re-into our simulations, can introduce bias, but the effects
quires, for a locus with n alleles, the inversion of a matrixof error in gene-frequency estimation will generally be
of size n(n 1 5)/2, which is 12 3 12 at the minimumtrivial (of order 1/N when N individuals are censused
with multiallelic loci and beyond analytical solution.for gene frequency) compared to the additional sam-
Moreover, unlike the correlation estimator for D, thepling errors that arise in the estimation of relatedness,
regression estimator for this coefficient is well behavedprovided the number of individuals sampled exceeds
over the full range of allele frequencies.100 or so (Ritland 1996a,b). Moreover, this source of

As noted above, some simple statements can be madebias can be simply removed by omitting the pair of
concerning the minimum sampling variance that oneinterest from the estimate of allele frequency (Queller
can expect to achieve in the estimation of relationshipand Goodnight 1989), although pathological behavior
coefficients. For pairs of unrelated or distantly relatedwill occur in the rare event that marker alleles are
individuals assayed at L loci, each containing n alleles,unique to particular individuals, as this would lead to
the standard errors of the estimates of φ (details leadingpopulation gene-frequency estimates of zero. In addi-
up to this result are not shown), D, and r will be no lesstion, the sampling variance of the relationship coeffi-
than 2√(n 1 4)/[Ln(n 2 1)], √2/[Ln(n 2 1)], andcients owing to uncertain allele frequencies can, in prin-

ciple, be obtained by resampling procedures. √1/[L(n 2 1)], respectively. For diallelic loci, a com-
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mon situation with allozymes, these limits take on values tive-genetic technique can be applied to natural popula-
tions. Ritland’s (1996a) method provides a means ofof 3.5/√L, 1/√L, and 1/√L. With large numbers of al-
estimating the additive and dominance components ofleles, as can be achieved with microsatellite loci, the
genetic variance for quantitative traits (and covariancelimits asymptotically approach √4/Ln, √2/Ln2, and
between traits) in the field by regressing measures of√1/Ln. Fortunately, the two coefficients with the lowest
phenotypic similarity on the relatedness coefficients r̂sampling error, r and D, are the ones that have the
and D̂. Aside from the physical labor involved, one ofgreatest practical utility.
the greatest difficulties with this technique is the need toOne of the limitations of both the regression and
eliminate the sampling variance from the total observedcorrelation methods for estimating relatedness is the
variance of relatedness to estimate the actual varianceuse of weights that assume zero relationship. The best
in relatedness. The problem is by no means trivial asweights are a function of the actual relationship, but this
can be seen in Ritland and Ritland’s (1996) firstis an unknown. Nevertheless, the use of approximate but
application of the technique with the monkeyflowerincorrect weights yields more precise estimates than the
(Mimulus). With eight assayed loci, the estimates of ruse of unweighted estimators, because differences in the
derived by the correlation method ranged from 23 toinformation content of alleles with different frequencies
15, with approximately a third of all observed valuesare at least partially taken into account. One might think
being negative. The actual variance of relatedness wasthat estimates obtained with the null weights could be
estimated to be on the order of only 0.04. Thus, almostimproved upon by subsequently refining the weights,
all of the observed variance in r̂ was due to samplingusing the previous estimates of relatedness in the calcu-
error. Such results clearly highlight the practical needlation of the weights. These revised weights could then
for molecular and statistical methodologies for minimiz-give a second round of weighted estimates, and the
ing the sampling variance of relatedness.whole process could be repeated again until a suitable
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APPENDIX

Provided there are only two alleles at the locus in the
population, the approach provided in the text for a

P 5 1
P(ii |ij)
P(jj |ij)
P(ij |ij)
P(i·|ij)
P(j·|ij)
P(··|ij)

2.homozygous reference genotype can also be applied to
the case in which the reference genotype is a heterozy-
gote for alleles i and j. The conditional probabilities
of observing proband genotypes, given a heterozygous For any pair of individuals, the observed data vector
reference genotype, are (P̂) will always contain a single one for the observed

two-genotype combination with all other elements beingP(ii |ij) 5 p2
i 1 pi(0.5 2 pi)φxy 2 p2

i Dxy (A1a)
equal to zero. The linear model then becomes

P(jj |ij) 5 p2
j 1 pj(0.5 2 pj)φxy 2 p2

j Dxy . (A1b)

P̂ 5 a 1 Mx 1φxy

Dxy
2 1 e, (A4)The third probability, P(ij|ij), is omitted, as only two of

the three probabilities are needed for a sufficient statis-
tic because the three probabilities sum to unity. where the matrix Mx has two columns that contain the

Equating these probabilities to their estimates and coefficients for φxy and Dxy, respectively, a is a column
rearranging, estimators for the coefficients of relation- vector containing the remaining constants (functions only
ship are obtained as of gene frequencies), and e is a vector of residuals with

expectation zero. The elements of Mx and a are obtained
directly from Equations A1a and A1b and A3a–A3d.φ̂xy 5

2[q2P̂(ii |ij) 2 p2P̂(jj |ij)]
pq(q 2 p)

(A2a)
If the elements of the observation vector P̂ were inde-

pendent and identical in distribution, ordinary least-
D̂xy 5 1 2

P̂(ii |ij)
p

2
P̂(jj |ij)

q
, (A2b) squares analysis could be used to obtain estimates of

the relationship coefficients with minimum sampling
wherein, to emphasize that these equations apply only variance. However, because all of the elements of the
to diallelic loci, we have dropped the subscript i, letting observation vector are constrained to sum to 1, such
p 5 pi and q 5 1 2 p. From Equation 1, conditions are obviously violated. Although the failure

to fully account for the structure of the data in the P
r̂xy 5 1 1

P̂(ii |ij) 2 P̂(jj |ij)
(q 2 p)

. (A2c) vector does not cause the estimates of the coefficients
of relationship to be biased, it does elevate the sampling
variance. Unfortunately, the variance-covariance struc-When gene frequencies are exactly equal, a reference

heterozygote at a diallelic locus yields undefined esti- ture necessary to generate the optimal weights for a
more powerful generalized least-squares framework de-mates for φxy and rxy.

If there are more than two alleles in the population, pends on the unknown parameters φxy and Dxy. To obtain
approximate weights, we rely on Ritland’s (1996b) ar-there are six possible proband genotype categories con-

ditioned on observing the heterozygous reference geno- gument that, in the absence of prior information on
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the relationship of x and y, it is reasonable to start with and from Equation 1
the assumption that φxy 5 Dxy 5 0.

Using the optimal weights given by Equation 4b of r̂xy 5
pjP̂(i |ij) 1 piP̂(j |ij) 1 (pi 1 pj)P̂(ij |ij) 2 4pipj

pi 1 pj 2 4pipj

.
Ritland (1996b), we were able to obtain analytical solu-
tions for the weighted least-squares estimators of φxy and

where P̂(i|ij) 5 P̂(i·|ij) 1 2P̂(ii|ij) and P̂(j|ij) 5 P̂(j·|ij) 1Dxy using an equation solver program. These are
2P̂(jj|ij). When there are only two alleles, Equations

φ̂xy 5
4pipj(1 2 pi 2 pj )[1 2 P̂(ij |ij )] 2 2(1 2 2pipj )[pjP̂(i |ij ) 1 piP̂(j |ij )]

(1 2 pi 2 pj 1 2pipj )(4pipj 2 pi 2 pj )
A5a–A5c reduce to the diallelic-locus estimates (A2a–

(A5a) A2c).

D̂xy 5
(1 2 pi 2 pj )P̂(ij |ij ) 2 pjP̂(i |ij ) 2 piP̂(j |ij ) 1 2pipj

1 2 pi 2 pj 1 2pipj

, (A5b)


